Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media.
نویسندگان
چکیده
1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold concentrations. The self-assembly of 1-dodecyne ligands on the nanoparticle surface was manifested in infrared spectroscopic measurements. Importantly, the resulting nanoparticles exhibited apparent electrocatalytic activity for oxygen reduction in alkaline media, and the performance was found to show a volcano variation in the Au content in the alloy nanoparticles, with the best performance observed for the samples with ca. 35.5 at% Au. The enhanced catalytic activity, as compared to pure Ag nanoparticles or even commercial Pt/C catalysts, was accounted for by the unique metal-ligand interfacial bonding interactions as well as alloying effects that increased metal-oxygen affinity.
منابع مشابه
Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline media
Stable alkyne-capped copper nanoparticles were prepared by chemical reduction of copper acetate with sodium borohydride in the presence of alkyne ligands. Transmission electron microscopic measurements showed that nanoparticles were well dispersed with a diameter in the range of 4e6 nm. FTIR and photoluminescence spectroscopic measurements confirmed the successful attachment of the alkyne ligan...
متن کاملAgAu bimetallic Janus nanoparticles and their electrocatalytic activity for oxygen reduction in alkaline media.
Bimetallic AgAu Janus nanoparticles were prepared by galvanic exchange reactions of 1-hexanethiolate-passivated silver (AgC6) nanoparticles with gold(I)-mercaptopropanediol complex. The AgC6 nanoparticles were deposited onto a solid substrate surface by the Langmuir-Blodgett method such that the galvanic exchange reactions were limited to the top face of the nanoparticles that was in direct con...
متن کاملNi@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...
متن کاملElectrocatalytic Activity of Organically Functionalized Silver Nanoparticles in Oxygen Reduction
Silver nanoparticles capped by a variety of organic ligands (i.e., 1-hexanethiol, 1-octyne, and 4-trifluoromethylphenyl fragments) were synthesized by a chemical reduction route, with the resulting nanoparticles denoted as AgSC6, AgHC8, and AgPhCF3, respectively. The nanoparticle structures were characterized by using a variety of techniques including NMR, UV-vis, infrared, thermogravimetric an...
متن کاملElectrocatalytic properties of platinum and it's binary alloy with vanadium in oxygen reduction reaction(ORR)
The electrocatalysis of the oxygen reduction reaction (ORR) on carbon supportedPt-V (1:1) catalyst in polymer electrolyte fuel cells (PEFC) was investigated. Atan oxygen pressure of one atm an enhanced electrocatalytic property of Pt-V/Ccompared with Pt/C is revealed. These results indicate the occurrence of adifferent electrocatalytic mechanism for the ORR on Pt/C and Pt-V/C. Anincrease of mas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 21 شماره
صفحات -
تاریخ انتشار 2015